

Qt for N8

Hands-On

Instructions

Copyright © 2010 Digia Plc.

 Qt Training

Hands-On Instructions

 Copyright 2010 Digia Plc.

Trademarks and Acknowledgements

The exercises for this training have been developed by Digia Plc Training team.

Digia and the Digia logo are the trademarks of Digia Plc.

All other trademarks are acknowledged.

 Qt Training

Hands-On Instructions

 Copyright 2010 Digia Plc.

Adaptive Flashlight

Objectives

Play around with the Sensors API

References

Exercise starting point:

\\\\templatestemplatestemplatestemplates\\\\FlashlightFlashlightFlashlightFlashlight

Exercise example solution:

\\\\qt_hands_on_solutionsqt_hands_on_solutionsqt_hands_on_solutionsqt_hands_on_solutions\\\\FlashlightFlashlightFlashlightFlashlight

Overview

In this exercise we will create a very simplistic, adaptive “flashlight” application: When it’s
dark, the screen will be white and when it’s less dark it will be gray and in full sunlight it
will be black:

Dark

Bright

Sunny

Practical Outline

1. Open the project template in QtCreator from the set of codes distributed. The
template creates a white screen.

2. Try in QtSimulator to see it works.

3. Add a QAmbientLightSensor for your mainwindow

a. Remember to modify the .pro file and to use the mobility name space

4. Create your own slot function where you will change the color of the screen
(graphicsview’s background brush) depending on the reading of the sensor

5. Start listening to changes in the reading

6. Voilá! Try in QtSimulator and in device!

7. Optional: Add eye-Candy, publish in Ovi store, make a million dollars

 Qt Training

Hands-On Instructions

 Copyright 2010 Digia Plc.

Qt Mobility Hands-On: Locationer

Objectives

Try using the new QtMobility APIs with an application called “Locationer”

References

Exercise starting point:

From the scratch!

Exercise example solution:

\\\\qt_hands_onqt_hands_onqt_hands_onqt_hands_on\\\\SolutionsSolutionsSolutionsSolutions\\\\LocationerLocationerLocationerLocationer

Overview

In this exercise we will do a very simple application that shows the location of the user and
allows the user to send his GPS coordinates to a friend with a SMS.

N.B. In order to do this exercise you will need to have the Mobility APIs installed both for
your development environment and device. The device also needs to have a GPS receiver.

If you do not have a device, you can try to implement only the part of the application that
shows the location but does not allow sending an SMS. The Simulator in Nokia Qt SDK
supports GPS simulation well enough.

You have rather free hands in implementing this how you wish, but here are few
screenshots of one solution that simplify the idea of the application:

Searching for GPS Signal

Still searching… (more dots, one added each

second).

First try did timeout, re-try

 Qt Training

Hands-On Instructions

 Copyright 2010 Digia Plc.

Finally, coordinates! These can now be send

to a friend by clicking the button…

Which opens the default editor for SMS (S60

Messaging app here) with premade contents.

Practical Outline

1. Start a new Qt application from the scratch

2. Implement suitable UI contents with Qt Designer (you can do it how ever you

wish)

3. Implement some logic to find the user’s location and show the result in your UI.
The following classes might interest you:

•••• QGeoPositionInfoSource
•••• QGeoPositionInfo
•••• QGeoCoordinate

Things you might want to take into account:
a. No GPS signal found immediately
b. No GPS signal found after timeout
c. You can choose the way coordinates are presented (or let user choose!)
d. What if user is moving, do you want to update the coordinates even after

they are found?
e. While GPS is trying to locate (can take several seconds), some animation

could be helpful for the user, like just increasing the amount of dots in the
text (see screen shots).

f. Sending an SMS should not be possible before the location is found
g. Using GPS in S60 requires the capability “Location”. Also in the .pro

file, you need to modify the field with “MOBILITY = “ by adding

“location” and “messaging”

4. Then, when coordinates are found, generate a QMessage with the suitable contents

and launch the default editor for sending the message. You will also need class
QMessageService to do this.

Tips for installing/executing the application in the device:

From Nokia Qt SDK, you can do this directly by following the instructions in
document “Getting started with Symbian device development” which is found
under the Nokia Qt SDK Start Menu folder. For Symbian devices, this should not be
a problematic step.

 Qt Training

Hands-On Instructions

 Copyright 2010 Digia Plc.

Animations!

Objectives

To develop mobile applications using the Nokia Qt SDK and to play around with the Qt
Animation Framework and graphics effects.

References

Exercise starting point:

From the scratch!From the scratch!From the scratch!From the scratch!

Exercise example solution:

\\\\qt_hands_on_solutionsqt_hands_on_solutionsqt_hands_on_solutionsqt_hands_on_solutions\\\\AnimationsAnimationsAnimationsAnimations

Overview

In this exercise you will explore the Animation Framework and graphical effects. We will
first start by just adding an extremely simple animation and then extend our application a
bit by adding more animations.

Practical Outline

1. Open Qt Creator from Nokia Qt SDK and create a new project. Select “Mobile Qt
Application”. Give whatever name you wish for your project, select a desired
folder. Select the platforms you want to develop for (at least Desktop and the Qt
Simulator, if you have a Symbian/maemo device, then select those as well). For
the other selections you can rely on the default ones.

2. Qt Creator creates a new project with already some files included. From the

“Forms” folder you can find the .ui file, which is the Qt Designer (or Form
Designer) file. Open the file and you will have the UI Designer view where you can
design your applications UI layoutb.

Eventually we might end up with something like this:

3. Play around with the UI Designer checking what can be done with it and start with
two push buttons in a vertical layout.

4. When the initial UI layout is ready you can start modifying your QMainWindow

class, the one you just designed:

a. Open mainwindow.h and add a new slot function called “void runAnim1()”

b. Implement the slot function to mainwindow.cpp. Inside, create an
animation of your own that for instance moves the two push buttons to
each others’ places and back. Start with a simple QPropertyAnimation

 Qt Training

Hands-On Instructions

 Copyright 2010 Digia Plc.

modifying the property “geometry” of one button and then later extend
your animation to both buttons with a QParallelAnimationGroup .

Idea of the animation:

 In the middle of the

animation the buttons

have switched places

And then return back

5. Try your animation with different target platforms, the desktop build, Qt Simulator,

Symbian device etc.
N.B. If you want to execute your application in Symbian device, you need to
first start the “TRK” application and connect with USB before Qt Creator can
launch the application there.

The application executed in a Symbian device

6. Add a graphics effect (QGraphicsBlurEffect for instance) for one of the buttons.

7. Try animating the graphics effect itself (on/off during some time duration). If you

want to make the animation endless, you can try function setLoopCount() with

value -1.

8. Add a slider and a spin box to your UI layout (in the UI Designer), like in the
screen shots. You can try connecting a signal directly here in the Designer between
these two elements (valueChanged(int)->setValue(int)), but eventually

remove the connection, as we are up to something cooler.

9. Make the slider move “smoothly” depending on what was set to the spin box.

a. Create a new slot function where you will animate the moving of the slider
to a given new value (by modifying the slider’s property “value ”).

b. Connect your spin box’s signal valueChanged(int) to your slot function

c. Try your application and be amazed by Your Ultimate Qt Animation Skillz
as the slider moves smoothly from a value to other!

10. Play around with different QEasingCurves for the animations (setEasingCurve ())

and observe the effects

