Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

However, transfer functions for the two-port delay line configuration may be generalized. One such transfer function used for rapid simulation tools is as follows11:

where where f is the frequency, k is the piezoelectric coupling coefficient, τ is the delay between IDTs in wavelengths, CS is the capacitance for an IDT digit pair per unit length, NP is the number of IDT digit pairs, and X is defined as:

...

Physical quantityLinear coefficient
Temperatureup to 100 ppm*/K
Pressure, stress2 ppm/kPa
Force10 ppm/kN
Mass loading30 ppm/μg·cm2
Voltage1 ppm/V
Electric field30 ppm/V·μm−1

Figure 68: Linear coefficients for physical effects on SAW sensors6. *ppm = parts per million. For example, when measuring pressure, a change in SAW frequency of 2x10-6 corresponds to a change in pressure of 1 kPa.

...

Substrate materialCrystal cutLinear TK*
Lithiumniobate LiNbO3

rotated 128 Y/X cut

Y/Z standard cut

72 ppm**/K

92 ppm/K

Lithiumtantalate LiTaO3

X/112Y

36 Y/X rotated cut

18 ppm/K

30 ppm/K

Quartz (SiO2)ST-X cut0 ppm/K

Figure 79: Temperature coefficients at room temperature for SAW substrate materials. *TK = temperature coefficient. **See note on figure 6 8 above for explanation of ppm.

...

10C.K. Campbell (1989), “Applications of Surface Acoustic and Shallow Bulk Acoustic Wave Devices,” Proceedings of the IEEE, Vol. 77, Issue 10, Oct 1989.

11W11W.C. Wilson, G.M. Atkinson (2007), “Rapid SAW Sensor Development Tools,” NASA Langley Research Center.