Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

1. #Reflection
2. #Total Internal Reflection
3. #Dispersion
4. #Refraction
5. #References

Reflection
Anchor
Reflection
Reflection

...

"Reflection is a change in direction of a wave upon striking the interface between two materials."(#1.)

...

For example, in image 4, the eye is sighting along a line at a position above the actual image location. For light from the object to reflect off the mirror and travel to the eye, the light would have to reflect in such a way that the angle of incidence is less than the angle of reflection. In Diagram B above, the eye is sighting along a line at a position below the actual image location. In this case, for light from the object to reflect off the mirror and travel to the eye, the light would have to reflect in such a way that the angle of incidence is more than the angle of reflection. Neither of these cases would follow the law of reflection. In fact, in each case, the image is not seen when sighting along the indicated line of sight. It is because of the law of reflection that an eye must sight at the image location in order to see the image of an object in a mirror.

Total Internal Reflection
Anchor
Total Internal Reflection
Total Internal Reflection

#Back to top
is a phenomena which occurs when light propagates from the medium with greater index of refraction in the medium with lower index of refraction. From Snell's law we know that the light in this case refracts away from the normal. That means that there is an angle of incidence for incoming ray where all the light will not leave the medium with higher index of refraction, but instead it will reflect in direction perpendicular to the normal (i.e. in the plane of the boundary).  If the angle of incidence is larger than this critical angle, all the light is reflected back into the medium with higher index of refraction. We can obtain value for critical angle mathematically using following equation: 

...

Fig. 5. Multiple total internal reflections (#4.)

Practical Use of Total Internal Reflection

#Back to top

Total internal reflection has many practical uses. The best known are arguably its use in glass prisms in binoculars and cameras where it allows for compact size of the instrument while providing for long internal optical paths. Second major area of application is in optical cables - namely in multimode optical cables. There the pure glass/silica core is made of material with higher refractive index than the cladding that surrounds it and so the light which enters it under angle of incidence larger than critical it will reflect there and back thorough the cable to the other end (in the same way as on the picture above). This is used extensively in data communications as optical cables offer higher bandwidth (lower attenuation of high frequency signals), resistance to electromagnetic noise and (much) thinner cables. Optical cables are also used in endoscopes (stomach sonds). Other uses are for example in inkless fingerprint readers

...

Fig. 6. Diffraction of light in prism (#5.)

Practical Use of Dispersion

#Back to top

Dispersion is used in spectrometers - devices which are used in many fields of science to analyze the chemical composition of objects. It is based on the fact that different chemical elements emit and absorb different wavelenghts of light, and this spectra can be seen using spectrometers. 

In other fields, the dispersion can be a nuisance: in camera lenses it leads to chromatic aberration and in optical cables chromatic dispersion limits the maximum bandwidth of the fiber (though this effect is not as strong as modal dispersion which is caused by longer paths of reflected rays as opposed to those that travel straight through along the core. 

Refraction
Anchor
Refraction
Refraction

#Back to top
It’s the change in direction of a wave due to a change in its medium. It is essentially a surface phenomenon. This is most commonly observed when a wave passes from one medium to another at any angle other than 90° or 0°. (#6.)
Explanation:

...

Wiki Markup
<ac:structured-macro ac:name="anchor" ac:schema-version="1" ac:macro-id="50de94e5bec806a9-f32adb7a-42f746a4-89ed8bf6-42aef32fe575c7c6e9cec198"><ac:parameter ac:name="">3.</ac:parameter></ac:structured-macro> 3. _Reflection and Its Importance_. (n.d.).  Retrieved December 10, 2012, from Physics Classroom: \[http://www.physicsclassroom.com/class/refln/u13l1c.cfm\]

...