Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Capacitive sensors technology is based on capacitive coupling which detects human body capacitance. The capacitive touch screen consists of an electric insulator such as glass, which is plated with an electrically conductive material. When human touches the glass, it creates a change in the electric field that can be detected as capacitance change by the sensor. In Figure 1 we can see a typical capacitive sensor.

 Image RemovedImage Added

Figure 1. iPhone touchscreen sensor

A good example about capacitive sensors is the touch screen of iPhone. It has a circuitry which can detect changes at each point along the grid. Every point has its own unique signal when touched and relays that to the iPhone’s processor. This way of detecting human touch gives iPhone the ability to determine the location and movement of simultaneous touches in multiple locations on the phone’s touch screen.

 Because of iPhone’s reliance of this capacitive material, iPhone’s touch screen doesn’t detect with stylus or non-conductive gloves. In Figure 2 we can see inside iPhone’s touch screen.

 
Figure 2. Layers of iPhone

How does capacitive sensor detect touch?

 

Figure 3. Pre-processing circuit for capacitance measurement

Capacitive sensor coverts measured capacitance into a digital value called Raw Counts. With Raw Counts we can detect is the finger on or near the sensor since the sensor can detect change of capacitance even if you are not touching the screen. Figure 3 is a block diagram which shows capacitive touch sensing pre-processing circuit.

...

  1. http://www.embedded.com/design/connectivity/4401019/1/Capacitive-sensing-for-advanced-user-interfaces
  2. 2. Larry K. Baxter (1996). Capacitive Sensors. John Wiley and Sons. p. 138. ISBN978-0-7803-5351-0.
  3. http://www.capacitive-sensing.com/ More about capacitive sensors. Math and applications.
  4. http://www.analog.com/library/analogdialogue/archives/40-10/cap_sensors.html

Physical Principles of Sensing -Capacitive sensors

Capacitive sensors 

Touch Switch D5C

Image Added

Figure 1. D5C sensor

D5C sensor is mainly used in the industry.

 

Acoustic camera

What is acoustic camera?

Acoustic camera is camera with an array of microphones. Array of microphones is basically a group of microphones. Acoustic illustrates the source and intensity of the sounds. 

Image Removed

Image 1. Acoustic camera with 32 microphones.

How it works?

General

Each microphone in the array records audio stream of their own from specific position on the camera. This creates the microphones amount of streams. The position difference is stored in memory so that other microphones audio data is filtered from other microphones in the array. 

Beamforming

Because of the position of the microphone in the array, there is delays in the receiving sounds. It's dependent on the distance of the sound source and the microphone. Delays are adjusted to focus one single point in space. This is called beamforming.  Area that is recorded is token as an image. The focusing process is repeated for every point in area which is recorded. 

Problems/Challenges

Signal processing in acoustic camera is very hardware heavy and memory heavy. Due to this usually the digital signal processing is done after the recording. 

Applications?

Acoustic camera is used to search sound sources and noise reduction. It is used for instance for cars, airplanes, helicopters, trains and structures. 

Companies selling acoustic cameras

Sources

http://www.metsystem.hu/Companies/Fellner/Acoustic-camera/Image17.jpg (1. Image)

http://blog.kaistale.com/?p=246

http://en.wikipedia.org/wiki/Beamforming

http://en.wikipedia.org/wiki/Acoustic_camera

 

Ultrasonic sensor

Ultrasonic sensors emit a high frequency sound waves and evaluate the echo

Image Removed

Position sensors characteristics comparison

Electret microphone

PropertyNonlinear
Sensitivity(- 46 ± 2.0, ( 0 dB = 1V / Pa ) at 1K Hz)Nonlinear function
Input span (db min ... db max) 
Full-scale output(50-10000(Hz)) 
Output impedance 
Output format 
Dynamic 

 

Image Added

Figure 2. Tempeture characteristics DC and AC

In figure 2 there is one comparison between DC and AC models. In these pictures is sensitivity when temperature is changing.  In these pictures we can see comparison with DC and AC models. AC models are more sensitive but they can change less sensitive when temperature increases.

Below is all the information I could find about D5C sensor.

Item                                                DCAC
                                                          ModelD5C-1D@0D5C-1A@0
Degree of protectionEquivalent to IP67 
Mechanical durability10,000,000 operations min. (at rated overtravel value) 
Supply voltage (operating voltage)12 to 24 VDC (10 to 30 VDC), (ripple: 10% max.) 100 to 240 VAC (45 to 264 VAC), 50/60 Hz
Rated frequency---50/60 Hz
Sensitivity setting range30 to 100 pF 
Current consumption17 mA max.---
Leakage current  (Circuit/Antenna) ------|1 mA max.2 mA max. |1 mA max.
Response time2 ms max8 ms max
Output current200 mA max. (resistive load) 
Insulation resistance50 MΩ min. (at 500 VDC) between lead wires and case 
Dielectric strength1,000 VAC, 50/60 Hz for 1 min between current-carrying metal parts and non-current-carrying metal parts2,000 VAC, 50/60 Hz for 1 min
Rated insulation voltage (Ui)1,000 VAC 
Pollution degree (operating environment)3 (IEC947-5-1) 
Protection against electric shockClass II 
Proof tracking index (PTI)175 
Switch categoryD (IEC335) 
Vibration resistance10 to 55 Hz, 1.5-mm double amplitude 
Shock resistance1,000 m/s2 min. 
Ambient temperatureOperating: −25°C to +70°C (with no icing) 
Ambient humidity35% to 95%RH 
WeightApprox. 110 g (in case of D5C-1DS0) Approx. 120 g (in case of D5C-1AS0)

D5C_Datasheet.pdf

Interface electronic circuits

AD7142:  PROGRAMMABLE CONTROLLER FOR CAPACITANCE TOUCH SENSORS

AD7142 is connected to the sensor with excitation source and CIN wires. Sensor itself is integrated to the circuit board.

 Image Added

Figure 1. AD7142 circuit board

How the input signal is conditioned, e.g. how the signal from the sensor is bring up to the format compatible with the load device?

 

 Image Added

Figure 2. When is the sensor avtive and not active

The practical response from the sensor is defined by the converter’s output change when the sensor goes from inactive to active. When the sensor is not active the AD714x sensors measures the capacitance value as ambient value as seen from Figure 3. As previously explained in Position sensor page, the capacitive increases when the finger is touching screen or a button and it decrease when finger is moving away of the screen or button.

 Image Added

Figure 3. Ambient cpacitive value

What is the electrical input impedance of the sensor?

Maximum Output Load 250 pF(Capacitance load on source to ground).

On which parameters does it depend on? e.g. frequency, temperature, etc.

Capacitance sensor output levels are sensitive to temperature, humidity, and in some cases, dirt.

 Does the signal need amplification?

 Image Added

Figure 4. Grumpy cat

Does the sensor need excitation current or voltage? How much?

It uses 250kHZ excitation source, but there is no mention of current or voltage.

 Image Added

Figure 5

What other analog electronics are needed for the signal conditioning?

It has two DACs(Digital-to-analog converter) to null any capacitance sensor offsets.

How the signal is converted to digital format?

It uses capacitance-to-digital(CDC) converter which is Σ-Δ architecture with 16-bit resolution. It has a sampling frequency of 250 kHz.

Does the A/D conversion happen already in the sensor or is it typically converted in PC or embedded system?

It happens on the circuit board. It is possible to program two DACs.

How much there is noise? And what kind of?

It has parasitic capacitance of 40 pF.

How is the sensor calibrated?

It has on-chip calibration logic to account for changes in the ambient environment. Calibration works when sensor is not touched. The calibration sequence is performed automatically and at continuous intervals. By this way the calibration ensures that there are no false or nonregistering touches on the external sensors due to different environment changes.

 Image Added

Figure 6. Sensor calibration

In Figure 6 we can see how exactly calibration works. It goes offline, when user touches sensor, and enables itself after user leaves sensor area and small delay.

Sources

  1. http://www.analog.com/en/analog-to-digital-converters/capacitance-to-digital-converters/ad7142/products/product.html AD7142, PROGRAMMABLE CONTROLLER FOR CAPACITANCE TOUCH SENSORS
  2. http://www.analog.com/static/imported-files/data_sheets/AD7142.pdf AD7142 datasheet

Materials used in capacitive sensors

Capacitive sensor material has to be conductive. It doesn't really matter from what material sensor is made, so long it's conductive. Common conductor capacitive sensing materials include copper, ITO (Indium tin oxide), glass, acrylic and silver ink. The resistance is also a big factor when choosing the correct material.

ITO for example has a high resistance, which might need a PreScaler, which is used to slow down frequency in the CSD User Module for Capsense to facilitate optimum performance. ITO is broadly used in touchscreens and handling. In manufacturing ITO has some disadvantages. Its materials are fragile and heavy, and the manufacturing process is labor intensive and expensive. Touchscreens today use 1, 2 or 3 layers of ITO depending on the specific product design considerations and the touch panel supplier technical capabilities. More information about touchscreen layers can be read below.

Manufacturing technologies

In this article, we will be studying touchscreens of iPhone and Samsung Galaxy. Newest iPhone and Samsung Galaxy touch screens have been constructed using several layers of materials. This is called 'stackup' which can be seen in Figure 1.

.Image Added

Figure 1. Typical stack sensor with multiple layer technology

The top layer is a protective layer, which is made from glass with an anti-scratch coating, or PMMA (polymethyl methacrylate), which is also called acrylic or plexiglas. Directly underneath the surface layer is a layer of thin adhesive and then the electrically conductive layers for touch sensing. In Figure 2 we can see 3 different touchscreen examples. They show just how thick each layer actually is.

 Image Added

Figure 2: Example of layering and thickness differences in sensor designs

 

 

 

 Image Added

Figure 3: Typical touchscreen manufacturing process flow

In figure 3, we can see an example of a typical process flow for manufacturing ITO-based sensors. Steps include sputtering ITO powder over glass, thermal baking the ITO to its melting point and creating a conductive layer and then etching the sensing circuit topology on the conductive layer by use of laser lithography or photo. Every one of these steps adds cost as a result of materials cost, manufacturing time, and yield loss.

 

Sources

  1. 2010, Materials used for capacitive sensing http://www.cypress.com/?id=4&rID=36843
  2.  2013, Trevor Davis, Cypress Semiconductor, Reducing capacitive touchscreen cost in mobile phones http://www.embedded.com/design/system-integration/4407698/Reducing-capacitive-touchscreen-cost-in-mobile-phones-

Ultrasonic sensor

Image Added

Figure 1

Ultrasonic sensors emit a high frequency sound waves and evaluet the echo which is received back by the sensor. The principle in ultrasonic sensors is pretty much the same as on radars and sonars, after sending the sound wave, the sensor calculates the time it takes between sending the signal and receiving the echo to determine how far the object is from the source. Capacitive sensors are also called as transceivers/transducers, and this is because the sensor sends and receives at the same time.

 

Image Added

Figure 2

The formula for calculating how far the object is, is really simple, basically you just measure the time it takes for the pulse to travel, multiply it with the speed of sound which is 341m/s in air, and divide the whole thing with 2, since the pulse travels from the sensor to the object and back.

Image Added

Figure 3

One of the drawbacks is that the ultrasonic sensor is that there is no way of telling the difference between small and large objects because the pulse that's emitted is cone shaped, because of the shape, an echo will be returned by all objects the pulse comes into contact with. One way to work around this is to use rotating sensor or multiple sensors to find out the shape and objects size.

Image Added

Figure 4 (Ultrasonic pulse from the transducer sensor)

In industry, ultrasonic sensors are used  to detect movement of targets and to measure the distance to targets in many automated factories. As for example, they can be used to sense the edge of material as part of a web guiding system.

Sources:

  1. http://en.wikipedia.org/wiki/Ultrasonic_sensor
  2. http://www.ehow.com/how-does_4947693_ultrasonic-sensors-work.html?ref=Track2&utm_source=ask
  3. http://www.education.rec.ri.cmu.edu/products/nxt_video_trainer2/resources/helpers/nxt_sensors/ultrasonic.html


sensor_pres.pptx

...