Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Comment: Migrated to Confluence 4.0

Virran ja vääntömomentin välillä on yhteys

 J d2θ/dt+b dθ/dt = K t i,

eli hitausmomentti * kulmakiihtyvyys + viskoosikitkavakio * kulmanopeus =  tarvittava momentti

Pyörimisnopeuden ja jännitteen välillä on yhteys

L di/dt + Ri = U- K e dθ/dt

...

Siirtofunktio

...

Käyttämällä Laplace-muunnosta virran ja jännitteen yhtälöt saadaan seuraavaan muotoon.

Virran ja vääntömomentin välinen yhteys

J s2θ(s) + b s θ(s) = K tI(s)

Jännitteen ja pyörimisnopeuden välinen yhteys

L s I(s)+ R I(s) =U- K e s θ(s)

Jänniteyhtälöstä voidaan alkaa piirtää xcos tai Simulink mallia...

  Image Added

Ja vakiot.sce tiedostoon laitetaan moottorin ominaisuudet.

Moott.R=5.5;
Moott.L=0.5;
Moott.Ke=2;
Moott.Kt=0.21;
Moott.J=0.028;
Moott.Damp=0.1moottori.jpg Image Removed
moottori.jpg

U: 200V

I: 20A

T: 4.2Nm

Jkok: 0.028kgm²

...