You are viewing an old version of this page. View the current version.

Compare with Current View Page History

« Previous Version 12 Next »

Laplace-muunnos Laajempi selitys

Hieman yksinkertaistaen voisi sanoa, että Laplace-muunnos muuttaa derivaatan kertolaskuksi ja integroinnin jakolaskuksi. Tältä kannalta katsottuna Laplace-muunnoksen hyödyllisyyden ymmärtää; onhan kerto- ja jakolaskut huomattavasti helpompia laskea kuin derivoinnit ja integroinnit. Myös alkuarvojen käsittely muunnoksen avulla on helpompaa, koska differentiaaliyhtälön yleistä ratkaisua ei tarvitse missään vaiheessa laskea.

Ajasta riippuvan funktion f(t) Laplace-muunnosta merkitään F(s)_tai _L ja se määritellään integraalina:



 

Muuttuja s on kompleksimuuttuja ja usein kompleksitasoa, jonka alkios on, sanotaan Laplace-tasoksi tai s-tasoksi. Yleensä Laplace-muunnosten yhteydessä on tapana merkitä imaginääriyksikköä kirjaimella j.

Muunnos on olemassa kaikille sellaisille luonnossa esiintyville funktioille, joiden arvo on nolla ennen hetkeä t=0. Säätötekniikassa käsitelläänkin vain funktioita, jotka alkavat hetkellä t=0. Myös joillekin epäfysikaalisille funktioille, kuten impulssifunktioille, jonka energia on ääretön, voidaan tehdä Laplace-muunnos.

Laplace-tasosta päästään takaisin aika-tasoon käänteismunnoksella:


 
Käänteismuunnoksessa integrointi suoritetaan kompleksitasossa ja vakiob valitaan siten, että muunnettavan funktion singulariteetit jäävät integroimispolun oikealle puolelle.



Seuraavassa taulukossa on lueteltu Laplace-muunnoksen ominaisuuksia. Taulukossa muunnettavaa ajan funktiota on merkitty pienellä kirjaimella ja vastaavaa Laplace-muunnettua funktiota isolla kirjaimella.


 
Alku- ja loppuarvoteoreemat ovat myös tärkeitä esimerkiksi laskettaessa vasteen loppuarvoa. Jos tarvittavat raja-arvot ovat olemassa, pätee funktiolle ja sen Laplace-muunnokselle:

  • No labels
You must log in to comment.